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Hausdorff Dimension of Regular Points in Stochastic 
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This paper studies statistical properties of shocks for the inviscid Burgers equa- 
tion with an s-stable L6vy motion initial data. In the absence of analytic results, 
numerical and computer simulation tools are utilized. Qualitative and quan- 
titative information on the scaling properties of Lagrangian regular points of 
solutions is obtained and, in particular, their Hausdorff dimension is estimated 
to be I/ct. This suggests at possible extension of Ya. Sinai's result for Brownian 
initial data. 
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1. I N T R O D U C T I O N  

The Burgers  equa t ion  

O,u + u O,.u = v 3x,.u, v = c o n s t  > 0 (1 .1 )  

where u = u ( t ,  x)  for t > 0 ,  x e l ~ ,  and  u(0, x ) = u o ( x ) ,  is essent ial ly a sim- 
plified vers ion of  the N a v i e r - S t o k e s  equa t ion  with the pressure  te rm and  
the incompress ib i l i ty  cond i t ion  omit ted .  It has  been widely used in the 
physical  l i te ra ture  as a mode l  equa t ion  for a var ie ty  of  phenomena ,  such as 
shock waves in h y d r o d y n a m i c  turbulence  (when v '~0) ,  gas dynamics  and  
evolu t ion  of  sel f -gravi ta t ing st icky ma t t e r  in large s p a t i o t e m p o r a l  scales of  
the universe lsee, e.g., refs. 4, 9, 23, and  31). The  equa t ion  also arises as a 
conserva t ion  law in the fol lowing generic s i tuat ion:  cons ider  a flow of  
u(t, x )  (say, descr ib ing  the densi ty  per  unit  length of  a cer ta in  quan t i ty )  on 
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the real line with the flux of this quantity through section at x described 
by another function ~b --~b(t, x). Assume that the flow is subject to a conser- 
vation law 

f.VI Ot u( t 'x)  dx +q~(t 'xl)--cP(t 'x~ .x'O 

when x.  <x~. If we assume that the flux ~b(t, x) = ~(u(t, x)) depends on the 
local density only, then, as xo --* xm, the above conservation law leads to an 
equation of Riemann type 

0 , u -  ~ ' (u)  a.,.u = 0 

If the flux function is permitted to depend additionally on the gradient of 
the density u as ~b(t, x) = ~(u(t, x)) - v O,.u(t, x), then the above conserva- 
tion law leads to the equation 

0,u - r 0.,.u = v 0,..,.u 

of which the Burgers equation is a special case. 
The Hopf-Cole substitution ~b(t, x; v)= 2v In O(t, x), involving the 

velocity potential function q, =~b(t, x ) =  q,(t, x; v) defined by the relation 
u = -0,.q,, transforms the nonlinear Burgers equation into the linear diffu- 
sion equation for 0 = O(t, x), thereby leading to the explicit formula for the 
velocity potential 

q l ( t , x ; v ) = 2 v l n  (4rcv t ) -12 f_~exp  ~vv ~b~ 2t / i d a  (1.2) 

where ~o = ~bo(a) is the initial velocity potential (u o = -0,.q,o). 
The velocity function u = u ( t , x ) = u ( t , x ;  v) can then be expressed 

explicitly in the following way: 

u(t, x; v) = t -I Z(t, x; v) (1.3) 
I ( t ,x;  v) 

where 



Stochastic Burgers Flows 279 

In the present paper we discuss the Burgers equation model with ran- 
dom initial data, in which case its solutions are also referred to as Burgers 
turbulence [see ref. 30 and 31 for recent surveys]. 

At the mathematical level, several recent papers (see, e.g., refs. 1, 3, 7, 
11, 21, and 26-28) have discussed the asymptotic behavior of the rescaled 
random field u(t, x; v) as t--* ~ or as v--* 0, assuming that the initial data 
Uo(X) are various stochastic processes (or random fields if the 3D analog of 
the above Burgers equation was being considered). 

In particular, Rosenblatt ~2t~ assumes that Uo is an asymptotically 
uncorrelated stationary process and shows that, under some additional 
technical conditions, a centered and rescaled velocity potential ~ u(t, x; v) dx 
converges weakly to the Brownian motion process. Bulinski and 
Molchanov 131 and Albeverio et al. I'~ deal with Gaussian scaling limits for 
initial shot noise and stationary fields with regular spectral density data, 
where u(t, x; v) obeys a "Gaussian scenario" of the central limit theorem 
type. Surgailis e t  al.  17"26-28~ obtain a classification of (not necessarily 
Gaussian) scaling limits for a variety of initial processes and random fields, 
which include Gaussian stationary fields with singular spectral densities 
and shot noise processes driven by Cox-Gibbs processes, i.e., doubly 
stochastic Poisson processes with random intensity, which takes into 
account a potential of interaction between different "bumps." 

If the initial fluctuations ~'o(X) are large enough to make the exponen- 
tial moments of Go(X) infinite, and the marginal tail distribution function 

P[exp(~o(X)/(2v))  > y]  

varies slowly as y ~  or, then the behavior of u(t, x) is very different from 
the "Gaussian scenario," namely 

x - a ( t , x )  
u( t, x ) ~  ( t--* or) (1.4) 

t 

where a = a(t, x)  is the point maximizing the right-hand side of (2.1) below. 
For a degenerate shot noise process Go(X), the asymptotics (1.4), together 
with an estimate of growth of the right-hand side of (1.4), was rigorously 
established in ref. 1. 

In their  important physical work, Gurbatov et alJ 91 discussed the 
asymptotics of u(t, x) at high Reynolds numbers, in the case when the initial 
Gaussian data ~bo(X) are characterized by large "amplitude" a =  [E(~0 
(0))2] 1/2 and large "internal scale" L = a/a* ~> 1, where a* = [ E(~,*(0)) 2 ] 1/2. 
At time t = tL ~ lL(ti.), where 

lc(t) = (at)t/2 [ log(a' t /2nL)] -i/4 

82286, I-2-19 
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is the "external scale" at time t, they demonstrated (at the physical level of 
rigor) that "... a strongly nonlinear regime of sawtooth waves ... is set up, 
... and the field's statistical properties become self-preserving" (ref. 9, 
p. 163). In particular, they were able to find explicitly one- and two-point 
distribution functions of the (limit) sawtooth velocity process (ref. 9, 
Section 5.4). Those ideas have been proven rigorously in ref. 20. 

A recent analysis, from the viewpoint of fluid mechanics, of statistics 
of decaying Burgers turbulence can be found in ref. 8. 

Kida ~ ~7~ was one of the first to attempt to characterize the distribution 
of shock strengths. His result can be equivalently formulated with the use 
of scaling relations in the following way: 

N ( s )  oc tl/6sl/2 for s ~  1 (1.5) 

where N ( s )  represents the number of shocks per unit length in a single 
realization of u(t,  x ) ,  having strength of order s. Hu and WoyczynskP 12~ 
calculated the shock density in Burgers turbulence based on asymptotic 
results of Albeverio et al. c~ and Molchanov et al. c2~ 

She et al. (24~ simulated the sawtooth profiles appearing in the solution 
to the inviscid Burgers equation with self-similar random data (with fixed 
t = 1 ), and postulated a general scaling law 

N ( s )  oc s I - I '  for s,~ 1 (1.6) 

where h -  1 denotes the & d e x  o f  sel f-s#nilariO, of initial data (i.e., h = 3/2 
for the Brownian motion and h = 1/2 for the white noise). The discussion 
of these and other types of Gaussian initial data can be found in an 
astrophysical paper by Vergassola et al., ~3~ also for spatial dimension 
greater then 1. 

The first rigorous result was Sinai's ~25~ theorem, which asserted that in 
the zero viscosity limit, the Hausdorff dimension of regular points for the 
Burgers stochastic flow with Brownian initial data is equal to 1/2 with 
probability 1. Avellaneda and E ~2~ proved a related result in the case of 
white-noise initial data. Namely, they demonstrated that 

P(s) oc s I/2 for s ~ l  (1.7) 

where P(s) is the cumulative probability distribution of shock strengths. 
In this paper we look at Sinai's problem in the context of heavy-tailed 

self-similar data of the L6vy a-stable type with the index of self-similarity 
equal to 1/a. We concentrate on the interval 1 < a ~< 2, where the Hausdorff 
dimension of regular points can be established, but also take a brief look 
at the asymmetric 0c-stable initial data with 0 < 0t < 1. In the absence of 
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analytic results, we rely on computer experimentation and statistical 
estimation techniques, as She et aU 24~ did for the Gaussian case. Our 
experiments suggest that it is possible to extend Sinai's Theorem to a-stable 
motion initial data. 

As an aside, let us just mention that the a-stable distributions are no 
strangers to astrophysical models. Apart from the Gaussian ( a = 2 )  and 
Cauchy (a = 1 ) distributions, one of the first nontrivial stable distributions 
(a=3/2)  was discovered in 1919 by Holtzmark, ~~ who found it while 
studying random fluctuations of the gravitational field of stars in space 
considered as a "random aggregate" of points with "randomly varying 
masses." 

The article is structured as follows. In Section 2 we briefly recall the 
method of construction of Lagrangian regular points in the Burgers equa- 
tion, based on an application of the Legendre transform. Section 3 contains 
basic facts on approximation and computer simulation of the a-stable Lrvy 
motion. These are quite nontrivial compared to the Gaussian case. The 
algorithm and the numerical strategy employed by us to construct 
the inverse Burgers Lagrangian function in the case of a trajectory of the 
a-stable Lrvy motion as an initial condition are discussed in Section 4. 
In Section 5 we present qualitative aspects of the solutions together with 
heuristic interpretations. Section 6 is devoted to the statistical computer 
investigation of the Hausdorff dimension of regular points of solutions of 
the Burgers equation for several values of parameter a in the interval 
I < a ~< 2. Section 7 summarizes our main observations. 

2. LEGENDRE T R A N S F O R M  

In the inviscid limit, i.e., when v ~ 0 ,  the solutions to the Burgers 
equation (1.1) develop discontinuities (shocks) and can be interpreted as 
global solutions of the limiting Riemann equation only in the weak sense. 
In this situation, it is more convenient to deal with the limit of the velocity 
potential function ~k = @(t, x; v) defined by (1.2). Taking v ~ 0 in (1.2) and 
using the steepest descent argument, we get 

~b(t, x) = max{ ~bo(a) - (x  - a)2/(2t):  a ~ R} (2.1) 

where q;o = ~ko(a)= -~"_.~_ uo(b )db  is the initial potential. 
Notice that with the use of the Lagrangian potent ia l  

~b(t,a) Jr a 2 
= - - T  + t~'o(a) (2.2) 
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and its Legendre transform 

H4,(t,x) d~ sup{~b(t, a)+ xa: a~R}  (2.3) 

we can write formula (2.1) in the form 

) / n  

x - x - / z  qj(t,x)=H4,(t, 
t 

(2.4) 

Making use of the crucial fact that 

H~ = H+ 

where ~ = ~ ( t ,  a) denotes the convex hull (envelope) of ~b with respect to 
the space variable a, and defining the Lagrangian map 

~'~a d~ _ ~ a ~ ( t  ' a) (2.5) 

we get the solution to the inviscid (i.e., zero viscosity limit) Burgers equa- 
tion in the form 

u(t, x) = Uo(ZP;-' x) 

where ~ , - t  is the inverse of ~ .  
Let a=a(t ,x )  denote any point where the maximum in (2.1) is 

attained. Function a(t, x) as a function of the space variable x for a fixed 
time t is the principal object of study in this paper. In what follows a = 
a( t, x) will be called the inverse Lagrangian fimction and x = x (  t, a) - - the  
(usual) Lagrangian function. Notice that 

a(t,x ')-a(t ,x")>~O for x '>x"  (2.6) 

which expresses the "sticky" property of shock fronts in Burgers tur- 
bulence; they may not pass through each other, while they may coalesce on 
collision. For  some values of x, called Eulerian shock points, there exists a 
whole interval [ a - ,  a+ ] ,  with a -  =a ( t ,  x -  ) and a + =a(t, x+), called the 
Lagrangian shock interval, where the maximum is achieved. For such values 
of x the Eulerian velocity u(t, x) is discontinuous and has a jump (shock 
amplitude) of size 

a + - - a -  
u § - - u -  = (2.7) 

t 
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which is proportional to the length of the Lagrangian shock interval. The 
union of all Lagrangian shock intervals a e [ a - ,  a +] is called the set of 
Lagrangian shock points. The set of" Lagrangian regular points is the com- 
plement of the union of the interiors ( a - ,  a + ) of all Lagrangian shock 
intervals. 

It follows from the mass conservation principle that all particles, 
initially located in the interval [a  , a + ], have coalesced by the time t into 
the single Eulerian point x. In such a situation, we extend the Lagrangian 
map by imposing 

~ a = x  for a ~ [ a - , a  +] (2.8) 

In the numerical simulations presented below we construct directly the 
inverse Lagrangian map 

~r x ~ a(t, x) (2.9) 

by searching for the points maximizing (2.1) with fixed t =  1, getting 
a(x) = 5a~ ~x. The Eulerian velocity is then obtained as 

x-a( t ,  x) 
u(t, x) = uo(a(t, x)) - (2.10) 

t 

All relations (2.1)-(2.10) are illustrated in Section 5 through a series of 
figures obtained on the basis of a fixed realization of initial data. 

3. a - S T A B L E  LEVY M O T I O N  A N D  ITS S I M U L A T I O N  

In this section we list some properties of s-stable random variables 
and introduce an or-stable L6vy motion, placed somewhere between 
Brownian motion and Poisson processes in the vast class of infinitely 
divisible processes, for which the structure of stochastic integrands and 
construction of  the stochastic integrals are well understood (see, e.g., ref. 
18). For  further details concerning theoretical properties of or-stable 
random variables and processes see ref. 22. The numerical and statistical 
methods of their simulation are discussed in ref. 14. 

The most common and convenient way to introduce a-stable ran- 
dom variables X is via their characteristic fimctions ~b(0)=E exp(i0X), 
which depend on four parameters: a, the index of stability; fl, the skewness 
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parameter; a, the scale parameter; and p, the shift. These functions are 
given by 

~ - a ~ l O l ~ { 1 - i f l s g n ( O )  tan(om/2)}+iltO, e r  (3.1) 
log ~b(0) = ~ - a  101 + i~O,  cc = 1 

where e~(0 ,  2],  f ie  [ - 1 ,  1], o ' e E + , / l e R .  
The fact that a random variable X has an e-stable distribution deter- 

mined by (3.1) will be denoted X-.~S~(a, fl, lt). Note that S2(a,O, lt ) and 
S,(a,  0,/~) are, respectively, the Gaussian distribution ./V(/~, 2a 2) and the 
Cauchy distribution. 

Working with e-stable distributions is complicated by the fact that, 
except for a few values of the parameters e, fl, a, and lt, explicit expressions 
for their density functions are not known. In computer simulations, an 
additional difficulty is that the convergence to a stable law in the corre- 
sponding central limit theorem is very slow, making the usual Gaussian 
random walk approach of little use. Our prior experience with computer 
experiments in this area ~ ,4~ indicates that the best algorithm for generation 
of a quasirandom sample of X with a symmetric e-stable distribution 
S~( 1, 0, 0), e e (0, 2], consists of the following two steps: 

�9 Generate a random variable V uniformly distributed on ( - n/2, n/2) 
and an independent exponential random variable W with mean 1. 

�9 Compute 

sin(~V) )~cos( - -~'/~ 

The formula (3.2) can be extended to provide the following algorithm 
for simulation of a totally skewed stable random variable X ~  S,(I ,  fl, 0) 
with parameters e e ( 0 ,  1) a n d / ~ =  + 1" 

�9 Generate a random variable V uniformly distributed on ( - n / 2 ,  n/2) 
and an exponential random variable W with mean 1. 

�9 Compute 

sin( o~( V + C ~. /~ ) ) { cos( V - e(_~_.~ + C ~. /~ ) ) } " ~ '/~ 
X=D~'tJ {cos(V)} t/, - -  (3.3) 

where 
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The proof that X defined by (3.3) has the S~(1, fl, 0)-distribution can 
be obtained by a modification of the argument of Chambers et  al. ~s) 
Historically, the first computationally useful formula for simulation of 
~-stable random variables was suggested by Kanter ~5) in the totally 
skewed case [formula (3.3)]. Then, on the basis of an integral formula 
from Ibragimov and Chernin, ~)3) Chambers et  al. derived formula (3.2) and 
its generalizations. Formula (3.2) contains as a special case the well-known 
Box-Miller formula for generating normally distributed random variables. 

Recall that ~-stable L6vy motion {L,(t):  t~>0} is defined by the 
following properties: 

(i) L~(0 )=0  a.s. 

(ii) The process {L~(t): t >/0} has independent increments. 

(iii) L ~ ( t ) - L ~ ( s ) , , ~ S ~ ( ( t - s ) ~ / ~ , [ 3 ,  O) for any 0 ~ < s < t < ~ .  

We are interested in investigating statistical solutions of the Burgers 
equation ( 1.1 ) with a trajectory of an ~-stable L+vy motion (with cc ~ ( 1, 2 ] ) 
as initial data, Le., we put 

fL~(a) for a>~0 
uo(a)=] .  ~ 0 for a < 0  

(3.4) 

This initial condition assures self-similarity of solutions to the Burgers 
equation, since (X 'j Y means that X and Y have identical distributions) 

L ~ ( C t )  d= C~ / ,L~ ( t  ) for C = C o n s t > 0  and t > 0  (3.5) 

which also assures the correctness of definition of q/ in (1.2). From (3.5), 
after integration, we get 

C o ( C a )  J= C (~+'~/ 'q lo(a)  

and from (1.2) we derive 

~O(t, x )  d= t(~ + t )/~,_ l ltp(1, x t ~ / ~  _ l ) ) (3.6) 

and also 

u(t ,  x )  d= tj/( ~_ ~)U(1, x t  ~ / ~ -  I)) (3.7) 

for 0 ~ ( I ,  2]. 
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The method of approximate computer simulation of an e-stable L6vy 
motion is based on the construction of a discrete-time process of the form 

4-AL i = 1  I ,~ ,,- i -----~.; ,  ..... (3.8) 

where X~ = 0 a.s. The set { t~ = it" i = 0, 1,..., I}, r = T/L provides a fixed- 
mesh partition of the interval [0, T]; the sequence of independent and 
identically distributed ~-stable random variables AL~. ~ (playing the role of 
increments of {L~(t)} over intervals Et~_~, tA) is defined by 

AL~.~=L~(tA-L~(t~_~)~S~(r'"~,fl, O),,,r'"~S~(1,fl, O) (3.9) 

and, finally, 

AL~.~=r'/~X i, i = 1 , 2  ..... I (3.10) 

where {Xi} denotes a set of independent copies of X, constructed via (3.2) 
or (3.3). 

It is not difficult to check that the finite-dimensional distributions of 
r 1 {X,,} ;=o from (3.8), on subsets of the mesh {ti} ~=0 are identical with the 

corresponding finite-dimensional distributions of the process { L~(t): t >10}. 
Furthermore, the above approximate method leads, in the limit when 
r--* 0, to the correct distribution on the space D([0, T],  R) of right con- 
tinuous sample paths with left limits/16) 

In order to adjust to the notation from the previous section, let us 
introduce a discrete function ~o-q;0(aA,  which is obtained by numerical 
integration of the discretized initial condition u~o(a~)= X ~ where a~ = ts = 

( t  t 

i . r .  More precisely, O;(a~) = 0 for i = 0, - 1, - 2  ..... and 

~ ( a i )  = - r  ( i ~  X ~ a-~X ~ "~ t=l "~--~ " J  for i = 1 , 2  .... (3.11) 

Formula (3.11) is a discrete (obtained via the "trapezoid method" of 
numerical integration) counterpart of the relation Oo(a)= -~"_:~ uo(b) db. 

4. N U M E R I C A L  A L G O R I T H M S  A N D  C O M P U T E R  
SI M U LAT IO  NS 

Due to self-similarity [properties (3.5) and (3.7)] of the initial data ~ 
and of the solution u--u( t ,  x), we can restrict our attention to the solution 
at fixed time, say t - -1 ,  and construct and study only functions 

a=a(x) ~l= a(1, x), x=x(a)  dl_~ x(1, a) 
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where a ( t , x ) , x ( t , a )  are defined by (2.1) and (2.8). So, for a particle 
initially (at time t = 0 )  at position a, x (a)  denotes its position at time t =  1. 
Conversely, if a = a(x)  is continuous at x, a(x)  denotes the initial position 
of a particle which at time t = 1 is located at x. If a = a(x)  is discontinuous 
at x, then the interval [ a ( x -  ), a (x  + )] describes initial positions of points 
a which form a "cluster" at x at time t = 1. This is illustrated in Fig. 7. The 
method based on construction of convex envelopes for given Lagrangian 
potential functions ~b =~b(a)=~b(1, a) also leads to the same structure of 
shock fronts, even when ~b is not differentiable [i.e., when the initial 
velocity field (3.4), approximated by (3.10), is discontinuous]. This is 
shown on Fig. 8. 

With the initial data defined by (3.11), we obtain a discrete analogue 
of (2.1), which can be rewritten in the following way 

~k 3. "(XJ) = max{ ~;(as) - ( x j -  a,)2/2: i e { .... - 2, - 1, 0, 1, 2,..., L... } } (4.1) 

where " s {.xj}i= o denotes a discrete set of values of x, defined as Xi= x,,~, + 
K.j ,  for j =  O, 1 ..... J, x = d t ( x  ..... --Xmi,) /J,  with fixed values of Xmi,, X .... . 
For a fixed .x:j, the value of as for which the maximum in (4.1) is attained 
will be denoted by a ~ "(X/), i.e., a(.~i) .~ a ~" "(.,cj). 

Starting with explicitly computed values of d/~''(xj) corresponding to 
the set of nonpositive as, we can proceed recursively with respect to the 
range of values of as in (4.1). Having at our disposal sets of values 
{a,T. ~-, x" '~ J and { a ~' ~(.~/)} J= o determined for { as: i ~< I}, it is sufficient to 5 u '~- . i / ~ ' j = o  

add the next point a1+~ to the right-hand side of (4.1) and, making use of 
monotonicity of the inverse Lagrangian function a =a(x) ,  to check which 
values of ~"  ~(X/) and a T" '~(Xi) increase. More details on different aspects of 
such computer algorithms can be found in ref. 24, where a similar approach 
is described. In our approach we pay more attention to certain statistical 
features of the algorithm involving the Lagrangian potential. Instead of 
looking at a fixed realization (trajectory) of the Lagrangian potential, we 
control some statistical properties of a stochastic process 

~(a)  = q~(a, o9) ~ q~(a)=qb(a, o9), a>~O (4.2) 

where ~b(a, o9)=~b(a) denotes the Lagrangian potential function corre- 
sponding to a single realization of an e-stable L6vy motion process [for a 
fixed o9eg2 in the underlying probability space (t2, ~ ,  P)] .  Using numeri- 
cal, statistical, and computer techniques described in detail in ref. 14, it is 
possible to construct this process for any 0~-stable initial data (3.4). The 
results presented on Fig. 9 suggest a kind of stochastically continuous and 
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monotonic dependence of the process q~ on a. At the same time, they 
explain why it is possible to get appropriate statistical samples of shock 
fronts for "practically all" corresponding trajectories of an a-stable 
L6vymotion process, and to construct acceptable estimators of their 
cumulative probability functions. 

The problem of estimation of errors a(x j ) -a~ ' ' ( x j )  and of their 
impact on the correctness of calculated approximate values of the 
Hausdorff dimension of sets of Lagrangian regular points (which exhibit a 
fractal structure) is quite nontrivial and it would be worthwhile to 
investigate it more thoroughly in the future. However, a careful design of 
our computational experiments allows us to select appropriate values of r 
and ~- which satisfy some obvious stability requirements. In particular, our 
results display a convergent behavior as values of r and K decrease, thus 
assuring sensitive detection of discontinuities (upward jumps) of a(x), and 
exhibit a discrete analogue of the self-similarity in computed and "zoomed- 
in" discrete data. Also, an experiment consisting of computation of shock 
intervals [ a - ,  a +] by two different methods-one based on relation (4.1) 
and the other utilizing a construction of the convex envelope for the 
Lagrangian potential-confirms the correctness of the numerical results (see 
Fig. 8). 

Our practical strategy, slightly different from that suggested by She et 
al., ~24~ and implemented on a relatively simple 85-MHz Pentium processor, 
was to produce a set of data for which the constructed fractal-like sets of 
Lagrangian regular points display a behavior reflecting the behavior con- 
jectured in this paper, and rigorously proven by Sinai ~251 for the Brownian 
initial data. This is achieved by repeated simulations of independent 
realizations of the process ~ = ~ ( a )  and of corresponding inverse 
Lagrangian functions a = a(x) providing statistical samples of shock inter- 
vals containing, on the average, about 100,000 trials. The results derived 
from computer simulations are close to the conjectured ones. In addition, 
monotonicity of the estimated Hausdorff dimension of regular Lagrangian 
points as a function of the parameter a varying from a = 2 to a = 1 provides 
a supplementary argument for their validity. 

One final remark is in order. The sample paths of the a-stable L6vy 
motion are discontinuous. With a discontinuous initial velocity the corre- 
sponding convex hull may have corner points and its derivative can be dis- 
continuous. Therefore, for an individual sample path, some part of space 
can be void of any mass and numerical results concern only the points 
where the derivative is continuous. This, however, ceases to be a problem 
with repeated sampling of the trajectories since the a-stable L6vy motion is 
stochastically continuous and has no fixed discontinuities where a positive 
jump would occur at a fixed point with positive probability. 
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5. QUALITATIVE FEATURES OF THE SOLUTIONS 

Having obtained sets of values ~a~''tx ~l.; we can analyze their t ~- . i / J j = O ,  

fractal structure, verifying whether they display the power-law behavior 
similar to that in (1.5) or (1.7). 

To get a first insight into the properties of statistical solutions of the 
initial value problem (1.1) with a-stable data, we present a series of figures 
containing graphs of the Lagrangian inverse function a = a ( x )  obtained 
from computer  simulations for two different values of parameter  ~, ~ = 2.0 
and ~ = 1.5. Similar to the Brownian motion case ~ = 2, the graphs show 
devil's staircases for ~ e ( 1, 2) as well, the effect confirmed by zooming in on 
details as shown in Figs. 1-4. A closer look at our results indicates that, for 
the ~-stable L6vy motion as initial velocity, the total number  of shocks per 
unit length is infinite and that the Euler shock points are dense. The latter 
effect becomes more pronounced when a approaches 1, which is somewhat 
surprising and seems to contradict naive guesses. However, it can be 
explained by the fact that typical trajectories of the a-stable L6vy motions 
display, as a' , ,  1, an increasing number  of very small jumps. 

For  comparison, we have also considered another family of self-similar 
a-stable initial data belonging to the class of subordinated L6vy ~-stable 
processes, namely the L6vy stable motion with a e (0, 1) and fl = - 1 .  Its 
increments have totally skewed distributions S~(1, - 1 ,  0), so only jumps in 
one direction are possible. Figure 5 and 6 present typical results of simula- 
tion for this range of parameters. In this case, despite the self-similar initial 
data, the set of regular points of the Lagrangian map displays no obvious 
fractal behavior. 
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Fig. 1. Inverse Lagrangian Function a=a(.v) corresponding to the solution of the inviscid 
Burgers equation at t = I, with a trajectory of the ~-stable L6vy motion (ct = 2.0) as the initial 
velocity (a versus x plot). 
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Fig. 3. Inverse Lagrangian function u=tl(.v} corresponding to the solution of the inviscid 
Burgers equation at t = 1, with a trajectory of the a-stable L6vy motion fix= 1.5) as the initial 
velocity ((t versus x plot). 
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Zoomingin on liner structures of the graph of Fig. 3. 
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Fig. 5. Inverse Lagrangian limction a =a( .~ ' l  corresponding to the solution of  the inviscid 
Burgers equation at t = 1, w i th  a trajectory of  the totall, skewed c~-stable L6vy motion 
I~ = 0 . 7 5 , / / =  - I )  as the initial velocity la versus x plot). 

Figures 7 and 8 are intended to illustrate the "Eulerian-Lagrangian 
machinery" presented in Section 2 and utilized in our study of statistical 
properties of solutions to the Burgers equation. 

Let us emphasize that all four graphs presented in Figs. 7 and 8 
describe the results of a computer experiment with the same fixed realiza- 
tion of the potential ~b 0 = ~bo(a) given by (3.11 ). 

It is impossible to make any comparison of results obtained for dif- 
ferent values of ~ on the basis of one realization of the s-stable L6vy 
motion (as presented in Figs. 1--4), because of an enormous spread of 
possible results. Thus one has to consider statistical features of the 
Lagrangian map ~b=~b(a) considered as a stochastic process. These are 
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Fig. 6. Zoomingin on finer structures of  the graph of  Fig. 5. 
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F i g .  7. Plots of the inverse Lagrangian function L/'l-~.\=~dx) and the corresponding solu- 
tion u = 1 4 x )  a s  functions o f  x .  F u n c t i o n  u solves the inviscid Burgers equation a t  t = I ,  with 
a trajectory of the co-stable L6vy motion ( e =  1 . 7 5 )  a s  the initial velocity (the largest jump o f  

a and u, corresponding to the same value o f  x ,  is indicated ). 

presented on Fig. 9 in the form of deciles, revealing a continuous 
dependence of this process on parameter e. 

6, FRACTAL STRUCTURE OF LAGRANGIAN REGULAR 
POINTS 

Surveying various practically useful methods of studying the fractal 
structure of experimental data (see, e.g; ref. 6), we found that the method 
based on the calculation of the cumulative frequency distributions of gaps 
between consecutive jumps of a = a ( x )  was best suited to our purposes. 
Given our emphasis on working with minimal sets of data that would give 
significant results, our choice was also influenced by the example of a study 
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Fig. 8. Plots of the Lagrangian map Y'la=x(a) and the Lagrangian potential r162 as 
functions of a. They correspond to the solution of the inviscid Burgers equation at t = 1, with 
a trajectory of tile s-stable L~vy motion (~= 1.75) as the initial velocity (only the largest 
shock interval is indicated}. 

of  the fractal structure of  Japanese earthquake data, c~9~ where a com-  
paratively small  data set was available. The m e t h o d  consists  in: 

�9 Simulat ion of  realizations of  initial data {~,o(a;): i = 0 ,  1,...}. 

�9 Computat ion  of  values of  the corresponding function / a n ~t x P. J t ~" ./PJj=O" 

�9 Calculation of  statistical frequencies of  gaps ( x - ,  x +) between con-  
secutive points  x -  and x + of  discontinuity of a=a(x) .  

�9 Est imat ion of  a value of  the scaling parameter H under the 
assumption that the corresponding set of  regular Lagrangian points  
described by intervals (x  , x  +) exhibits  the power- law behavior with 
scaling parameter  H. 
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Fig. 9. Plots of the Lagrangian potential q~ defined by 14.2) versus a. for 0~=2.0 (top) and 
a= 1.5 (bottom). This stochastic process is visualized here through a display of 20 realizations 
(thin lines) and 9 quantile (decile) lines q r = q e , ( a )  (thick linesk defined by the relation 
P{ ck(a I > qt,,(a ) } = Pi, for p, e { 0. I, 0.2,..., 0.9 }, and estimated on the basis of 5000 independent 
approximate trajectories of q~. 

So the final step of  the algorithm consists in estimating the value of  H 
such that 

#{(x ,x+):x+-x >Ax} ~Const.(Ax) - H  (6.1) 

It follows from Mandelbrot's theorem c *'~1 that the above algorithm producing 
(approximately) the cumulative frequency distribution of  Lagrangian shock 
intervals [ a - , a + ] ,  provides the Hausdorff  dimension H of  the corre- 
sponding fractal set of  Lagrangian regular points in R. 

Figures 10-13 show the results of  numerical computat ions  of  
approximate values of  the Hausdorff  dimension H for the set of  values of  
{ a~''~(-y;)} ~=o derived from (4.1). Values of  the parameter ~ = 2.0, 1.75, 1.5, 
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Fig. 10. The tail cumulative frequency distribution of intervals between jumps of the inverse 
Lagrangian function a = a(.r) corresponding to the solution of the inviscid Burgers equation 
at t = 1, with the symmetric e-stable L~vy motion trajectory (ct = 2.01 as the initial velocity; 
presented as a log-log plot. 

and 1.25 were considered for the same values of all other parameters  
included in the computer  algorithm (e.g., r --0.001,  K = 0.0025, I =  100,000) 
were used. Notice that (6.1) can be rewritten in the form 

log P{x + - x -  >Ax} ~ - H l o g ( , d x ) + D  (6.2) 

so the results are plotted on log-log scales. The horizontal axis is the 
logarithm of the size of gaps, and the vertical axis is the logarithm of the 
tail cumulative statistical frequency (calculated on the basis of 
approximately 100 x 5, 000 realizations 3) of sizes of gaps ( x - ,  x +) between 
consecutive points x -  and x+.  Each circle represents data for one of the 
30 selected values of dx. 

Before doing the linear least-squares fit, the data points for small and 
large values of Ax had to be removed. The data corresponding to small 
values of dx, which represent frequencies of small-size shocks, are not 
reliable because the grid size limits the ability to accurately decide if small 
jumps actually occur. On the other hand, in view of the theoretical results 
(see ref. 2 for the case ct = 2), we know that the large shocks follow a 
different law. 

The selection of lower and upper cutoff points was done using the case 
~ - - 2  and Sinai's theoretical result for calibration purposes. Thus data 
points number  1, 2, and 3 (counting from the left) were dropped. The 
upper cutoff points were selected to be the data points number  12, 13, 14, 

~One hundred repeated computations of a = atx) involving 5000 approximate values a ~' ̂ (x/). 

8 _ - 8 6  I---_0 
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Fig. 11. The tail cumulative frequency distribution of intervals between jumps of the inverse 
Lagrangian function a = a(x) corresponding to the solution of the inviscid Burgers equation 
at t = I, with the symmetric cx-stable Levy motion trajectory (ct = 1.75) as the initial velocity, 
presented as a log-log plot. 

and 15, w h i c h  gave  us four regress ion l ines s h o w n  o n  each o f  Figs.  10-13 .  
Their  s lopes  bracket  the  es t imated  H a u s d o r f f  d i m e n s i o n  H. N o t e  that in 
ref. 24 the fitting for the case cx = 2 was  d i sp layed  for a narrower  set o f  data  
c o r r e s p o n d i n g  r ough ly  to the interval  ( - 1 . 7 , - 1 )  on  our Fig. 7, W e  
dec ided  to d i sp lay  the entire picture  as it i l luminates  the w h o l e  s i tuat ion  
well  and  is typical  w h e n e v e r  one  tries to n u m e r i c a l l y  c o m p u t e  the power -  
law b e h a v i o r  (see, e.g., ref, 6). 
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Fig. 12. The tail cumulative frequency distribution of intervals between jumps of the inverse 
Lagrangian function a = r162 corresponding to the solution of the inviscid Burgers equation 
at t=  I, with the symmetric ~t-stable L6vy motion trajectory (a= 1.5) as the initial velocity, 
presented as a log-log plot. 
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Fig. 13. The tail cumulative frequency distribution of intervals between jumps of the inverse 
Lagrangian function a = a(xJ corresponding to the solution of the inviscid Burgers equation 
at t = 1, with the symmetric a-stable L6vy motion trajectory (~x = 1.25) as the initial velocity, 
presented as a log-log plot. 

Note  that  the inclusion of  data  points  4-13 and 4-14 results in 
bracketing: 

1 '2 + f + 0.007 
H = / ~ - 0.007 for ~ = 2.00 

4 '7 + f + 0.004 
H =  / ~ - 0 . 0 2 0  for c t=1.75 

+ 0.009 
H = 2/3 + ~ _ 0.033 for ~ = 1.50 

H 4 '5 f + 0.006 
= / + ~ - 0 . 0 2 4  for ~ = 1 . 2 5  

7. C O N C L U S I O N S  

The present computer  study of  statistical properties of  shocks in the 
solutions of  the inviscid Burgers equat ion with the initial data  of  0c-stable 
type strongly-indicates that the scaling properties of  the data  carry over to 
the fractal structure of  regular points of  the Lagrangian maps if 1 < a ~< 2. 
In particular it suggests the following: 

Conjec tu re .  Let 1 < a ~< 2. The set of  Lagrangian regular points of  
the statistical solution (1.2) of  the Burgers equat ion (1.1) with the a-stable 
L+vy mot ion  as initial data  has Hausdor f f  dimension I/~. 
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For completely asymetric 0t-stable initial data with 0 < a <  1, the 
simulations indicate that the conjecture is no longer true. 

The rigorous proof of the above conjecture cannot simply tbllow the 
lines of Sinai's proof for the case ~ = 2, which very strongly depends on 
specific properties of the convex envelope of the Lagrangian potential with 
Brownian initial data. The situation is much more complex in the c~-stable 
case, although then, in a sense, the law of the iterated logarithm has a 
simpler form. 
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